
Hybrid Classical Quantum Embeddings
for NLP and AI using Hamiltonians

Damir Cavar, James Bryan Graves, Shane Sparks, Koushik Reddy Parukola
Indiana University at Bloomington - NLP-Lab

Embeddings in AI/NLP

Distributional Semantics and Vector Models:

Word and text meaning encoded in dense vectors:
fastText (Bojanowski et al., 2017; Joulin et al., 2018)
GloVe (Pennington et al., 2014)
Numberbatch (Speer et al., 2017)
BERT (Devlin et al., 2019)
OpenAI GPT4 or Claude 4 LLMs and GenAI (byte-pair encoding)

Generating word embeddings and language models:
Costly and time-consuming computation

Large training and evaluation data sets

Many pre-computed models are freely available

Use-cases, for example:
Generic neural or probabilistic NLP methods for text classification, machine

translation, ...

Lexical- or text-similarity computation in semantic search

Quantum AI and NLP Questions:

Can classical embeddings and language models be used in QC for

Q-NLP/AI/ML?

How reliable are encoding approaches for mapping classical to

quantum embeddings?

Is there information loss or deterioration of quality in different mapping

approaches?

Our Goals

Identify reliable mapping approaches from classical to quantum

embeddings.

Compare the similarity metric in classical with quantum similarity

scores.

Mapping Algorithms: Amplitude Encoding: using real-number and

complex-number mapping

Storing Quantum States:
Amplitudes: each real-vector dimension mapped to one amplitude

Amplitudes: two real-vector dimensions mapped to one complex-number

amplitude (1st dimension as real part, second dimension as imaginary part)

Hamiltonian matrix stored on classical computer

Reduced Hamiltonians using Principal Component Analysis (PCA)

Similarity Measures: SWAP test (for hardware benchmarking)

Code-base and dataset for benchmarking available as part of the:
Natural Language Qu Kit (NLQK, https://nlqk.ai/)

Data

751 nouns from the SimLex-999 dataset Hill et al. (2015)

666 noun-pairs

embeddings for all nouns were retrieved from OpenAI and VoyageAI

Hamiltonians: 11 and 12 qubits = 212 × 212 = 4096 × 4096)
Dimensionality reduction using Principal Component Analysis (PCA),

reducing to 256 × 256

QuantumWord and Text Similarities

Classical embeddings→ Quantum embeddings
OpenAI GPT Embeddings, large 3072-dim. and short 1536-dimensional
word vectors

Claude 4 (VoyageAI) embeddings, 1024 and 2048 dimensions

Amplitude Encoding

SWAP Test (Buhrman et al., 2001)
Two circuits S and T with the same number of qubits
Measures the difference between S and T
Physical SWAP test of two embedded words or texts as hardware Benchmarking,

measuring the correlation coefficient to classical and simulated similarity scores

Results

Plain quantum encoding (with padding, normalization): ca. 0.9

correlation coefficient

Complex quantum encoding (with padding, normalization): ca. 0.9

correlation coefficient

Full Hamiltonians: > 0.9 correlation coefficient

Reduced Hamiltonian: not usable at all

Issues

Computational complexity of the conversion from classical to quantum
embeddings
Costly computation of similarity scores: padding, normalization, conversion

Hamiltonians data size

Conclusion

Result: classical vector similarity using Cosine Similarity and quantum
embedding similarity using Quantum similarities
Correlation Coefficient in general approx. 0.90 on average for the
pre-computed vector models using the qasm_simulator

There is minimal information loss in the encoding process.

Classical word embedding models can be used in Q-NLP/ML/AI tasks.

Compression from classical to quantum significant: 3,000 x 32bit to

12 qubits.

Mapping of classical real-number vectors to complex-number
quantum significant: saving 1 bit, BUT reducing the circuit size by
50%.
Circuit depth is linearly dependent on the input-vector dimensionality

Availability

Data and Code available: GitHub repo https://nlqk.ai/
PyPi Python module: pip install nlqk
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