The Hoosier Ellipsis Corpus (HELC): Documenting Linguistic Dark Matter

Damir Cavar
Ludovic Mompelat Muhammad S.Abdo NLP-Lab

Indiana University at Bloomington

Ellipsis Constructions

- Omission of words in sentences that are usually obligatory in a given syntactic contex Example: noun phrase (NP) or Forward Conjunct Reduction (FCR), as in example (1)
(1) a. My sister lives in Utrecht and ___ works in Amsterdam.
b. My sister lives in Utrecht and she/my sister works in Amsterdam.
gapping in (2a) where the verb complex is reading is elided
VP-ellipsis in (2b) where the entire predicate or Verb Phrase (VP) is elided
(2) a. Peter is reading a book and Mary _-_ a newspaper.
b. She will hi-five Daniel, but I won't

Context-dependent forms of ellipsis in responses to questions as in (3), the words each candidate will talk are elided:
(3) a. Will each candidate talk about taxes?
b. No, --- about foreign policy

Lexical mismatches of elided word forms as in (4a)
In highly inflecting languages like Hindi or Croatian (4b) elided words do not have to be homophonous
(4) a. John reads a book, but Paul and Mary (read) a newspaper. b. Ivan je čitao knjigu a Marija i Petar (su čitali) novine. (Croatian)

Elided elements scattered over multiple positions in example (5) where the words will, greet, and first are elided
(5) Will Jimmy greet Jill frst, or Jill Jimmy ?
ellipsis constructions are very common and often accompanied by specific semantic effects
(Testa et al., 2023; Hardt. 2023)
(Testa et al., 2023; Hardt, 2023

- semantic issues involve so-called zeugma (Sennet, 2016) as in example (6)
(6) a. John stole a book and Peter stole kisses from Mary
a. John stole a book and Peter stole kisses from Mary.

HELC Data

- HELC is constructed as a pair of sentences with optional context.
- The sentence pairs are separated by 4 dashes.

The second line contains the same sentence with the elided words spelled out.

Sample entry in the corpus:

ird sie kommen oder _-_ er gehen?
ird sie kommen oder wird er gehen?
TR eng: Will she come or will he go?
added by: John Smith
source: Wolfgang Klein (1981)
The canonical position of the elided word(s) is indicated by 3 underscores,

- Complex ellipsis constructions may have several elided positions.

Coverage

Languages: Arabic, Mandarin Chinese Croatian English, German, Guiarati, Hindi Japanese, Kumaoni, Korean, Navajo, Norwegian, Polish, Russian, Spanish, Swedish, Telugu, Ukrainian In preparation: Bengali, Bosnian, Bulgarian, Hebrew, Kanada, Serbian, Slovak, Slovenian, Tamil

Availability:

Data website: $\mathrm{https}: / / \mathrm{nlp}$-lab. org/ellipsis/
GitHub repositories: htps://github.com/dcavar/hoosierelli psiscorpus
Dr. Damir Cavar, Muhammad S. Abdo, Andrew Davis, Dhananjay Srivastava, Billy Dickson, Vance Holthenrichs, Soyoung Kim, Dr. Zoran Tiganj, Khai Anthony Willard, Calvin Josenhans, Yuchen Yang, John MacIntosh Phillips, Luis Abrego, lan Devine, Anshul Kumar Mangalapalli, Tanmayi Balla, Koushik Reddy Parukola, Dr. Ludovic Mompela

NLP Challenges

- Common State-of-the-Art NLP-pipelines fail, as in the following Stanza Dependency Trees: The syntactic subject in the second conjunct is not identified

- Coordination and ellipsis with Stanza: Useless Dependency parse tre

Constituent parsing with Stanza: no improvement - the common tendency is to analyze every coordination as local NP-coordination

- Lexical-functional Grammar using Xerox Linguistic Environment (XLE) and the English grammar:

All NLP-pipelines fail with most constructions containing:

- ellipsis
- syntactic discontinuities
independent of underlying syntactic theory or ML mode!!

NLP Pipelines Tested

- Benepar Kitaev and Klein (2018); Kitaev et al. (2019)
- spaCy 3.x Honnibal and Johnson (2015)

Stanford Stanza Qi et al. (2020)
Stanford CoreNLP Manning et al. (2014)
Xerox Linguistic Environment (XLE) Crouch et al. (2011)
-LLMs: GPT-4

- Baseline: Logistic Regression - Neural classifer using BERT
 - SOTA LLMs: GPT-4. Claude 3 etc.

- LLMs tested using linguistic bias prompt and 0 -shot or few-shot with 5 or more examples

Test 1: Binary Classificatio

- Does the sentence contain ellipses? Yes/No
- Test data: mix of distractor and target sentences (language dependent: e.g., English 575 target and 658 distractor sentences; Arabic 375 target and 500 distractor sentences) ten-fold randomized rotation for experiments

Test 2: Ellipsis Location

- Identify the location of the ellipses.
- Neural classifier using BERT
- SOTA LLMs: GPT-4, Claude 3, etc.

Test 3: Missing Words

- Identify the elided words
- Only SOTA LLMs: GPT-4, Claude 3, etc.

Task 1:

Conclusions

- Logistic Regression outperforms GPT-4 zero-shot on Task 1 - BERT model outperforms GPT-4 zero-shot on Task

Reference

 Saniel Hardt. Ellipsis-dependent reasoning: a new challenge for large language models. In Proceedings of the 6 sist Annual Meeting of the

 org/D15-1162.

 Christonher D. Manning, Minai Surdeanu, John Buer, Jenhy Finkel. Steven J. Bethard, and David MCCIosky. The Stanford Corenl. natural

Peng Qi, Yuhaz Zhang. Yahui Zhang. Jason Bolton, and Chistopher D. Manning. Stanzza: APython natural language processing tolkit tor

Adam Sennet. Polysemy. In 5 . Goldberg. editor, Oxford Handbooks Oninie: Philisophy. Oxford University Press, 2016 .

for studxing ellipsis and its interaction with thematic fti. In Proceedings of the 61st Annual Meeting of the Association for Computatatonal
The NLP-Lab (https: //nlp-lab. org/)

